Comments
yourfanat wrote: I am using another tool for Oracle developers - dbForge Studio for Oracle. This IDE has lots of usefull features, among them: oracle designer, code competion and formatter, query builder, debugger, profiler, erxport/import, reports and many others. The latest version supports Oracle 12C. More information here.
Cloud Computing
Conference & Expo
November 2-4, 2009 NYC
Register Today and SAVE !..

2008 West
DIAMOND SPONSOR:
Data Direct
SOA, WOA and Cloud Computing: The New Frontier for Data Services
PLATINUM SPONSORS:
Red Hat
The Opening of Virtualization
GOLD SPONSORS:
Appsense
User Environment Management – The Third Layer of the Desktop
Cordys
Cloud Computing for Business Agility
EMC
CMIS: A Multi-Vendor Proposal for a Service-Based Content Management Interoperability Standard
Freedom OSS
Practical SOA” Max Yankelevich
Intel
Architecting an Enterprise Service Router (ESR) – A Cost-Effective Way to Scale SOA Across the Enterprise
Sensedia
Return on Assests: Bringing Visibility to your SOA Strategy
Symantec
Managing Hybrid Endpoint Environments
VMWare
Game-Changing Technology for Enterprise Clouds and Applications
Click For 2008 West
Event Webcasts

2008 West
PLATINUM SPONSORS:
Appcelerator
Get ‘Rich’ Quick: Rapid Prototyping for RIA with ZERO Server Code
Keynote Systems
Designing for and Managing Performance in the New Frontier of Rich Internet Applications
GOLD SPONSORS:
ICEsoft
How Can AJAX Improve Homeland Security?
Isomorphic
Beyond Widgets: What a RIA Platform Should Offer
Oracle
REAs: Rich Enterprise Applications
Click For 2008 Event Webcasts
In many cases, the end of the year gives you time to step back and take stock of the last 12 months. This is when many of us take a hard look at what worked and what did not, complete performance reviews, and formulate plans for the coming year. For me, it is all of those things plus a time when I u...
SYS-CON.TV
The Transformation Toward Universal Utility Computing Is Beginning
When the cloud transforms into universal utility computing

Nick Davis's Blog

Cloud computing promises to change much of how we as developers, designers, and architects currently design and build web applications. For one, concurrency is big issue that need to be addressed if the apps of the next decade are going to scale on this cloud infrastructure.


One of the most popular themes in the last couple years on the web is the much-heralded “cloud computing”. Of course, the cloud metaphor is taken from the representation of the Internet in architecture diagrams as a big fluffy cloud to which other, more discrete networks and systems are interconnected. From the Wikipedia page, Cloud computing, defined, is:

a style of computing in which IT-related capabilities are provided “as a service”, allowing users to access technology-enabled services from the Internet (”in the cloud”) without knowledge of, expertise with, or control over the technology infrastructure that supports them.

Google popularized dynamic web-based applications that behaved much like desktop apps, and essentially ushered in the era of what we fondly (sometimes snidely) call “Web 2.0″. In the short span of 3 or 4 years (I’m counting since 2005, when the web community at large became aware of Ajax and similar technology), dynamic web applications have become the de facto UI for end-user interactive software offerings — if it makes sense to use the ubiquitous browser as the frontend, then why not? Instead of forcing users to install, configure, and learn yet another new desktop app, give them an interface with which they’re already comfortable and familiar. As an added benefit, the browser interface is supported on nearly every operating system and platform used today (proprietary plugins and extensions notwithstanding).

Since then, the “cloud” has been touted as the next generation of the web, and as a concept encompasses a few key areas:

  • storage - collect user settings/preferences, documents and media
  • computing cycles - harness the power of a thousand-node grid of servers for complex problems or CPU-intensive workloads
  • network transparency - mask low-level details such as IP addresses and other info as much as possible

Who’s Who and Challenges

Large vendors with existing market plays involving huge server farms and data centers are eagerly jumping on the bandwagon — like IBM, Google, Amazon, Sun, etc. Software vendors are touting their existing and upcoming apps as “cloud” initiatives. The previously mentioned firms, as well as Salesforce, Zimbra (now owned by Yahoo), Zoho, and a multitude of other startups are all rushing to lay claim to a piece of land in the Cloud Gold Rush. Even Microsoft, notoriously late to the web party, instead relying on its stalwart cash cows of Windows and Office, has made its own bid in the cloud wars with Mesh and announcements of a web version of Office.

Cloud computing promises to change much of how we as developers, designers, and architects currently design and build web applications. For one, concurrency is big issue that need to be addressed if the apps of the next decade are going to scale on this cloud infrastructure. Languages, platforms, and tools need to provide solutions for creating apps that scale efficiently on multiple cores, processors, and even systems. Architects will have to design solutions that are massively scalable and take advantage of the properties of the cloud. UI specialists and designers will work with browser-based frontends, as well as newer mobile phone interfaces and Internet-enabled devices (such as Nokia’s Maemo Internet tablet).

Beyond the Cloud

I envision a future beyond the current cloud computing craze, perhaps in 5 - 10 years, where computing is a utility service just like power and telephone service are today. Several companies, including Amazon and Sun, are already offering some utility-style services, and many distributed computing projects tackling specific problems run on volunteer end-user systems today, but I’m thinking of something much broader. Instead of vendor-specific mini-clouds or utility services, we should aim for what I’ll term universal utility computing (UUC), built on open protocols and standards.

Essentially, the idea is to ensure every node in the cloud is an active member. By “active”, I mean the resources of every device are available for use by others. Computing cycles can be used (when idle, or up to a certain configurable threshold percentage of total CPU), storage, etc. It’s similar in nature to a grid and distributed computing, but utilizing a general, Internet-wide approach.

So how would such a system work? For starters, a UUC protocol would be required, and agent software written for various operating systems. The protocol would specify the sequence of communication between nodes, allowing true peer-to-peer messaging. The agent would ideally sit in the kernel space, interacting with the built-in scheduler, hardware abstraction layer, and storage subsystem.

Once a device has been “UUC-enabled”, it could begin to participate in the utility cloud. Every system in the cloud would share its resources for utility computing. Applications would then have the ability to harness as much computing power as required. Nodes that didn’t participate in the utility cloud couldn’t take advantage of utility resources.

Imagine all mobile phones on Earth utilizing a small portion of their resources in protein folding computations, or all servers processing climate forecasting data, or molecular level interactions for medical applications. Internet-enabled gaming consoles, tablets, laptops, desktops, and a plethora of devices that may be idle 90% of the time can now be used for computation. Imagine if the machines available to the average botnet hacker could be used for helpful purposes instead of spam.

Naturally, there are several challenges that must be overcome. Security and privacy, as today, would have to be addressed, employing encryption and other techniques to ensure confidentiality and integrity. Outside of individual nodes, there must be built-in mechanisms for preventing DDOS-style attacks, as well as preventing malicious users from exhausting the available utility-dedicated resources on one or several devices. There must also be a system used to prioritize workloads sent to the cloud, and a way to adjust the priority of a task. Checks and balances could be automatic, ensuring that a particular workload doesn’t use more than pre-determined slice of the available resources for a system.

Universal utility computing could be the next phase of computing, one where the Internet is a true peer-to-peer system, and all nodes participate and share resources. Instead of having expensive data centers with custom hardware and software solutions, billions of devices with idle processors can be harnessed to help solve a variety of problems affecting the enterprise, health care, the scientific community, and others.


[This post appeared originally here and is reprinted by kind permission of the author, who retains full copyright.]

About Nick Davis
Nick Davis is an information security professional (CISSP) and software architect with several years of academic and professional experience. He earned an M.S. and B.S. in Computer Science from the University of Tulsa. Previously, hr was Founding Software Developer for Vidoop, an Internet security and identity company that provides some useful solutions for managing one’s identity on the web. While at Vidoop he was co-inventor of the company’s flagship patent-pending authentication technology, the ImageShield.

In order to post a comment you need to be registered and logged in.

Register | Sign-in

Reader Feedback: Page 1 of 1

SOA World Latest Stories
You know you need the cloud, but you’re hesitant to simply dump everything at Amazon since you know that not all workloads are suitable for cloud. You know that you want the kind of ease of use and scalability that you get with public cloud, but your applications are architected in a w...
The cloud era has reached the stage where it is no longer a question of whether a company should migrate, but when. Enterprises have embraced the outsourcing of where their various applications are stored and who manages them, saving significant investment along the way. Plus, the clou...
As DevOps methodologies expand their reach across the enterprise, organizations face the daunting challenge of adapting related cloud strategies to ensure optimal alignment, from managing complexity to ensuring proper governance. How can culture, automation, legacy apps and even budget...
While some developers care passionately about how data centers and clouds are architected, for most, it is only the end result that matters. To the majority of companies, technology exists to solve a business problem, and only delivers value when it is solving that problem. 2017 brings...
Is advanced scheduling in Kubernetes achievable?Yes, however, how do you properly accommodate every real-life scenario that a Kubernetes user might encounter? How do you leverage advanced scheduling techniques to shape and describe each scenario in easy-to-use rules and configurations?...
DevOps is under attack because developers don’t want to mess with infrastructure. They will happily own their code into production, but want to use platforms instead of raw automation. That’s changing the landscape that we understand as DevOps with both architecture concepts (CloudNati...
Subscribe to the World's Most Powerful Newsletters
Subscribe to Our Rss Feeds & Get Your SYS-CON News Live!
Click to Add our RSS Feeds to the Service of Your Choice:
Google Reader or Homepage Add to My Yahoo! Subscribe with Bloglines Subscribe in NewsGator Online
myFeedster Add to My AOL Subscribe in Rojo Add 'Hugg' to Newsburst from CNET News.com Kinja Digest View Additional SYS-CON Feeds
Publish Your Article! Please send it to editorial(at)sys-con.com!

Advertise on this site! Contact advertising(at)sys-con.com! 201 802-3021


SYS-CON Featured Whitepapers
ADS BY GOOGLE